附件4

中小企业数字化水平评测指标(2024年版)

一、主要内容

《中小企业数字化水平评测指标(2024年版)》延续2022年版整体架构,从数字化基础、经营、管理、成效四个维度综合评估中小企业数字化发展水平,并对评测方式进行了调整优化,其中,数字化基础、管理和成效三个维度采用评分的方式确定等级,数字化经营部分用场景等级判定的方式确定等级。主要内容如下:

1.数字化基础、管理和成效维度

由3个一级指标,9个二级指标,15个采集项组成。采用评分方式判定中小企业该部分数字化水平等级。

	2000-100-100-100-100-100-100-100-100-100													
一 级 指 标	数字化基础			数字化管理			数字化成效							
二级指标	设备系统		数据采集	信息系统		息全	规管	划 理	要保	素障	绿色低碳	产品质量		场益
采集项	网络建设	设备联网	数据采集	信息系统	网络安全	数据安全	规划实施	管理机制	人才建设	资金保障	绿色低碳	产品质量	市场表现	价值效益

2.数字化经营维度

由 4 个一级指标、16 个二级指标组成,均为中小企业数字

1

化转型的应用场景,并将应用场景进行等级划分。结合中小企业数字化转型实际,按照不同等级场景选择的要求,判定中小企业该部分数字化水平等级。

一级 指标	产	品生数字	命周 字化	期			生产数字				供应数字	立链 字化	管理	里决贸	 後数字	≥化
二级指标	产品设计*	工艺设计	营销管理*	售后服务	计划排程	生产管控*	质量管理*	设备管理*	安全生产*	能耗管理*	采购管理*	仓储物流*	财务管理*	人力资源	协同办公	决策支持

备注:标*为约束性场景(共计10项),是引导企业深度改造的重点场景;剩余为指导性场景(共计6项)。

二、判定方法

依据数字化基础、管理及成效评测得分和数字化经营应用场景等级判定(须同时满足两部分要求),将中小企业数字化水平划分为四个等级:一级(初始级)、二级(规范级)、三级(集成级)、四级(协同级)。判定方法为:

Atr 411.	要求 (同时满足)				
等级	数字化基础、管理及成效	数字化经营 应用场景			
一级 (初始级)	≥20 分	不少于6个应用场景(其中不少于 3个约束性场景)等级需达到一级			
二级 (规范级)	≥40 分	不少于6个应用场景(其中不少于 3个约束性场景)等级需达到二级			
三级 (集成级)	≥60分	不少于8个应用场景(其中不少于 5个约束性场景)等级需达到三级			
四级 (协同级)	≥80 分	不少于 10 个应用场景(其中不少于 6 个约束性场景)等级需达到四级			

备注:如企业无法满足最低级一级相关要求,则归类为无等级。

三、具体指标

(一)数字化基础、管理及成效评测表

一级 指标	二级 指标	采集 项	序号	题目	选项 类型
		网络 建设 40%	1	企业网络建设连接情况 □无 □企业车间建成工控网络,支持自动化控制应用 □企业建成应用系统网络,实现大规模设备、人员与信息系统互联,可支持大规模设备、人员与信息系统互联 □企业建设/租用 5G 工业网络,支撑系统互联和网络协同应用,满足 AGV、工业互联网等规模化移动应用场景需求 □网络全面覆盖生产现场与环节,具备未来智能化新应用的扩展能力	多选
数字 化础 50%	设备 系统 40%	系统 设备 40% 数字	2	企业的生产设备数字化率 □[0-10%] □(10%,20%] □(20%,40%] □(40%,60%] □(60%,100%] 具体数据[], 其中生产设备数量为[]台, 实现数字化的生产设备数量为[]台	单选
30 /0		设备 联网 30%	3	企业的生产设备联网率 □[0-10%] □(10%,20%] □(20%,40%] □(40%,60%] □(60%,100%] 具体数据[], 其中实现联网的生产设备数量为 []台	单选
	数据 采集 20%	数据 采集 100%	4	企业实现数据自动采集的业务环节覆盖范围 □无 □产品设计 □工艺设计 □营销管理 □售后服务 □计划排程 □生产管控 □质量管理 □设备管理 □安全生产 □能耗管理 □采购管理 □仓储物流 □财务管理 □人力资源	多选
	信息 系统 20%	信息 系统 100%	5	企业使用本地或云化部署的信息化服务,实现业务的数字化管理情况 □无	单选

		1		_ \/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
				□単个业务环节 □多个业务环节(2个及以上) □绝大部分业务环节(大于80%)	
	信 安 20%	网安全 50% 数安 50%	7	□全覆盖 □业在保障网络安全方面采取的举措 □无 □建立了网络安全管理制度 □使用了网络安全产品及服务(如防火墙、网络分区、入侵检测、身份认证等) □自行或委托专业评估机构实施网络安全风险评估□建立网络边界安全访问控制能力,及网络关键节点入侵检测和恶意代码检测能力 企业在保障数据安全方面采取的举措 □进立为据安全管理制度 □使用了数据安全管理制度 □使用了数据安全管理制度 □使用了数据安全产品及服务(如数据加密、数据备份与恢复、数据脱敏、数据分级分类保护等) □自行或委托专业评估机构实施数据安全风险评估□建立数据台账(类型、用途、数量、数据源单位、	多选多选
数字	规划 管 50%	规划 实施 50%	8	使用单位等),定期开展数据安全保障能力核验 企业对数字化的认识与执行水平情况 □无 □已经主动了解数字化相关内容 □已经制定实施数字化的规划、计划及保障措施等 □已经着手开始进行单点或多点的数字化改造 □已经通过数字化手段实现业务模式、管理决策方式的改变并取得成效 □定期组织员工去数字化建设成效较好的同行业公司参观交流,增强数字化转型意识	单选
化管 理 30%	3070	管理 机制 50%	9	企业数字化管理制度的建立情况 □无 □建立数字化转型实施工作流程 □建立信息系统建设及运营管理制度 □建立数据资源管理制度 □建立与数字化融合的科研、业务、产品等方面的 创新激励制度	多选
	要素 保障 50%	人才 建设 50%	10	企业在数字化人才建设方面采取的举措 □无 □配备专职/兼职的数字化人才 □设置专门的数字化岗位/部门	多选

	12.50
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	薪酬管理
□□有明确的数字化人才梯度培	育机制
企业近三年平均数字化投入总	额占营业额的平均比
例(企业成立不满三年按照实	际成立时长计算年均
│	
保障 11 □(10%,20%]	单选
50% \[\[\(\(\) (20%,40% \] \]	
□ (60%,100%]	
企业数字化改造后每百元营业	收入中综合能源消费
量相比于改造前的变化情况	
绿色 绿色 □増加	
低碳 低碳 12 □持平	单选
35% 100% □降低	, -
企业上年综合能源消费量为[]吨标准煤,前
年数据为[]吨标准煤	1 2 (4 /)/(-) (4
企业数字化改造后月均产品合	格率相比于改造前的
一 一 一 产品	<i>M M</i>
	单选
35% 100% □増加	
数字	
化成 企业上年度人均营业收入相比	于前年变化情况
效 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
20% 市场 □持平	
表现 14 □増加	单选
	营业收入为[]万
一	
市场	
效益 企业上年度每百元营业收入中	的成本相比于前年变
30% 化情况	
│ │ │ │ │ │ │ │ □増加	
	单选
50% □降低	
企业上年成本为[]万元;	前年成本为[]

评分逻辑:

1.对于 5 个选项的单选题,从第一个选项到最后一个选项每个选项的分值分别为 0 分、25 分、50 分、75 分、100 分; 对于 3 个选项的单选题,从第一个选项到最后一个选项每个选项的分值分别为 0 分、50 分、100 分; 多选题选 "无"得分为 0,其他情况得分为被选择的选项数量×100/(所有选项总个数-1)。

2.该部分总分=Σ每个选项得分*采集项权重*二级指标权重*一级指标权重。

(二)数字化经营应用场景等级判定表

		一级	二级	三级	四级
	二级	企业应用信息技术工具	企业对关键生产环节开展在线	企业应用工业互联网等数字化技	企业运用人工智能等前沿技术引
	一 ^级 指标	辅助开展工作,实现相关	数据采集和应用,基于信息化	术开展信息和数据的实时采集和	领转型升级,全面实现人机物互
一级	(业	业务的效率提升。	系统实现关键业务环节的数字	应用,通过跨部门、跨系统数据	联互通,打造孪生工厂、资源智
指标	多场		化、规范化管理。	集成共享实现主要业务流程的数	能调度、供应链可视化协同等先
	景)			字化集成。	进制造典型应用,构建基于数据
	泉/				应用的模型驱动生产运营模式,
					持续推进产业链协同。
		通过设计软件工具(如	应用信息化系统开展产品设	建立典型产品组件及关键零部件	运用仿真分析等技术实现对产品
		CAD、CAE、EDA 等)	计,实现产品设计过程或版本	的标准库及典型产品设计知识	外观、结构、性能等进行试验验
	产品	辅助开展产品设计。	的数字化、规范化管理,形成	库,并能在产品设计时进行匹配、	证或迭代优化等功能,并实现产
)		完整的产品设计资料(如方案、	引用或参考,实现产品设计与工	业链上下游间的多方信息交互、
产品	WH		图纸、模型、设计 BOM、版本、	艺设计的协同,实现数据跨部门	协同设计或产品创新。
生命			技术变更等)管理标准,并有	共享。	
周期			效执行。		
数字		应用设计软件工具(如	应用信息化系统开展工艺设	建立典型制造工艺流程、参数、	建立数据模型,基于质量、成本
化		CAM、CAPP 等)基于产	计,并实现设计过程的数字化、	资源等关键要素的知识库,并能	等数据运用三维仿真等技术实现
, rc	工艺	品设计数据辅助开展工	规范化管理,形成完整的工艺	在新产品工艺设计时进行匹配、	对于工艺设计的模拟仿真、迭代
	」	艺设计。	设计数据(工艺方案、工艺流	引用或参考; 实现工艺设计与生	优化。
	KX F1		程、工艺文件、制造 BOM、版	产系统间的数据交互、并行协同。	
			本、技术变更等)管理标准,		
			并有效执行。		

	1		1) - 1		1) 1
		借助信息技术工具(如电	使用信息化系统对营销信息	基于销售信息化系统实现对营销	使用人工智能等前沿技术,实现
		子表格、云存储等) 对销	(如销售计划、销售订单、销	信息(如销售计划、销售订单、	销售、财务、生产、供应链之间
	营销	售信息(如销售计划、销	售运行、客户信息或销售业绩	销售运行、客户信息或销售业绩	的数字化协同,实现实时销售预
	管理*	售订单、销售运行、客户	等) 进行规范化管理。	等)的实时管控,实现销售信息	 测,并自动或半自动制定采购、
		信息或销售业绩等)进行		化系统与生产、库存、财务等系	生产、物流等计划或方案,不断
		辅助记录和管理。		统的数字化协同。	提升柔性化制造水平。
		运用信息技术工具(如小	运用信息化系统实现售后服务	建立售后问题清单,实现售后问	基于信息系统实现面向客户的精
		程序、APP等)对售后服	流程的数字化、规范化管理,	题的快速响应,并能够指导产品	细化管理(如远程运维、主动式
	售后	务流程进行辅助管理。	并与设计、工艺、生产、销售	设计、工艺优化,实现售后服务	客户服务等内容);
	服务		部门进行信息共享。	与财务、质量等的系统的数字化	或建立客户服务数据模型,实现
				协同(如供应商索赔、本厂质量	满足客户需求的精准服务。
				考核账务处理等)。	
		应用信息技术工具(如电	应用信息化系统辅助生成生产	应用信息化系统实现基于物料安	运用人工智能等前沿技术,建立
		子表格、云存储等)辅助	计划,基于生产计划进行生产	全库存、销售订单、采购提前期、	生产排产与调度算法模型,实现
		人工编制生产计划。	准备检查(如物料、设备等),	生产交期等多约束条件自动生成	自动给出满足多种约束条件的优
	计划		实现规范化管理。	生产计划,并实现生产计划的下	化排产方案,形成优化的详细生
生产	排程			达与执行。	产作业计划,生产情况实时监测,
执行					提前处理生产过程中的波动和风
数字					险,实现动态实时的生产排产和
化					调度。
		应用信息技术工具(如电	应用信息化系统实现生产工单	应用信息化系统对生产工单信	运用人工智能等前沿技术建立生
	生产	子表格、云存储等)辅助	信息(如生产工单进度、产量、	息、工艺参数进行数据采集,实	产运行监测预警算法模型,实现
	管控*	人工进行生产工单数据	物料领用/耗用等)录入、跟踪,	现对生产过程中工单、物料、设	对生产过程中工艺参数、设备状
		的记录。	实现规范化管理。	备等的管控,实现信息化系统与	态、生产过程等生产作业数据的

			其他系统(如生产计划、质量或设备等)的协同,实现数据共享。	在线分析与实时监测预警,并驱动生产过程的迭代优化与闭环管
				控,不断优化生产管理。
	应用信息技术工具(如电	实现生产过程质量数据的数字	应用数字化检测设备及信息化系	应用前沿技术(如视觉质检)开
	子表格、云存储等) 辅助	化采集录入、统计与管理, 基	统实现关键工序质量检测, 自动	展产品质量检测,提升检测效率
│ │ 质量	开展产品质量信息的管	于信息化系统实现质量管理流	对检测结果判断和报警; 或应用	和检测水平,开展产业链上下游
灰皇 管理*	理。	程的规范化管理。	信息化系统实现对原材料、半成	质量数据跨企业共享;
6性			品、成品质量可追溯。	或构建产品质量管理模型,实现
				产品质量影响因素识别及缺陷预
				测性分析。
	通过人工或手持仪器开	通过信息技术手段制定设备维	基于信息化系统实现设备关键运	建立设备运行模型和设备故障知
设备	展设备点巡检,并应用信	护计划,开展设备点巡检、维	行参数数据的实时采集、故障分	识库,实现设备故障自动预警及
管理*	息技术工具辅助制定设	护保养等功能,实现设备的规	析和远程诊断,并依据设备关键	自动制定预测维护解决方案,并
日廷	备管理台账。	范化管理。	运行参数等,实现设备综合效率	基于设备综合效率的分析等驱动
			(OEE) 统计。	工艺优化和生产作业计划优化。
	应用信息技术工具辅助	应用信息技术手段实现安全作	实现危险废物存储、运输的全流	基于安全作业、风险管控等数据
安全	开展车间安全生产规范	业规范化管理,开展安全风险	程信息化管理,实现安全生产风	的分析及建模,实现危险源的预
)	的制定及管理。	数据、重大危险源等在线监	险实时报警,建立安全应急预案,	防性管理、自动预警及响应处理。
_ 工 /		测。。	实现安全事故处理与相关部门及	
			时协同。	
	应用信息技术工具(如电	应用信息化系统收集和管理	应用信息化系统或平台,实时采	建立设备能耗监测与优化算法模
能耗	子表格、云存储等)辅助	水、电、气、液等能耗数据,	集和管理水、电、气、液以及影	型,实现设备能耗实时监测、能
管理*	人工进行能耗数据记录。	实现基于能耗数据的统计分	响设备能耗的关键数据,实现设	源转化效率分析、未来能耗预测
		析,实现规范化管理。	备能耗的监测分析与相关部门协	及能源优化调度等。

				同管控优化。	
		借助信息技术工具(如电	应用信息化系统对采购管理信	实现供应商管理、询报比价、采	运用人工智能等前沿技术,实现
	采购	子表格、云存储等),辅	息(如采购需求、采购订单、	购计划、采购执行的全过程管理,	采购与内外部供应链之间的数字
	管理*	助记录采购订单信息和	采购过程或供应商等) 进行规	实现应用采购信息化系统与生	化协同,并实现供应链风险预警
		采购过程信息。	范化管理。	产、仓储、财务等信息化系统的	预测, 动态优化采购策略和方案。
				数字化协同。	
供应		使用信息技术工具(如电	使用信息化系统, 对物料、成	实现仓储管理信息化系统与生	使用人工智能等前沿技术,实现
链数		子表格、云存储等) 辅助	品、半成品、耗材等出入库、	产、采购、财务等信息化系统的	仓储物流与供应商库存或客户生
字化		记录出入库信息,实现对	库存等数据信息进行统计,实	数字化协同。	产计划间的数字化协同,并能够
, 15	仓储	库存数据的采集管理。	现规范化管理。		自动实现物流计划的自动制定实
	物流*				施或厂内物料自动配送;
	1237/16				或按照产供销状况,实现智能仓
					储(如智能预测库存需求,自动
					调整库存补货策略等)及厂外智
					能物流(物流监测与策略优化)。
		使用信息化系统辅助实	使用信息化系统,实现总账、	实现业务数据与财务管理的协	实现企业内外部协同,实现企业
		现日常财务记录,基本的	往来、存货、固定资产、出纳	同,能支持企业的管理会计核算,	财务管理全面智能化和数据驱
管理	财务	总账管理和财务报表生	等与财务会计核算的协同,对	实现通过财务的分析辅助决策,	动,并实现对企业未来的财务状
上述 决策	管理*	成(如资产负债表、利润	财务实现规范化管理。	帮助企业快速掌握资产、负债、	况进行预测、规划和风险评估。
数字		表、现金流量表)。		收入、成本、盈利能力等变动和	
化				使用情况,实现资产的优化配置	
FC.				和利用。	
	人力	采用信息技术工具(如电	基于信息化系统实现对考勤和	利用人力资源数据分析工具进行	应用人工智能等前沿技术,实现
	资源	子表格、云存储等),辅	薪酬福利等核心流程的规范化	关键指标分析,数据驱动人力资	个性化绩效管理、智能招聘与人

	助实现员工、流程的信息	管理。	源战略规划和决策制定。	才画像、个性化的培训和发展计
	记录。			划,支持战略性人才管理。
	应用信息技术工具(如电	部署具有更丰富功能的协同平	应用协同平台实现与财务、采购、	应用人工智能等前沿技术实现内
	子邮件或文档共享服务	台或办公软件, 实现日常业务	生产、项目管理等专业业务管理	部、外部数据的协同,在自动问
协同	等通讯工具)辅助日常沟	(如请假、报销、审批、通知、	系统集成, 实现数据共享和业务	答、智能推荐、智能预测分析和
办公	通和简单的信息共享文	公告或新闻等)流程的数字化。	流程的无缝对接, 且利用移动工	自适应工作流程等办公场景,组
	档处理。		具, 提升跨部门协作效率和响应	织员工在高度互联和智能化环境
			速度。	中实现无缝协作办公。
	运用信息技术工具辅助	运用信息化系统,整合关键业	利用数据驱动平台针对特定业务	运用人工智能等前沿技术整合企
	收集企业生产经营过程	多环节的数据,使用业务关联	场景(如工艺设计、报价策略、	业内外部数据,构建智能化的预
决策	基本数据,为管理者提供	分析和决策支持工具,提供直	生产计划、变更管理等)实施数	测、预警和决策模型,辅助管理
支持	简单的决策建议或方向。	观的可视化数据。	据模拟与效能优化, 助力决策者	层或业务人员进行智能化流程决
			精准评估并采纳最佳实践方案。	策,挖掘数据背后的深层次规律
				和价值。

备注: 1."*"为约束性场景。

2.数字化经营应用场景相应等级的判定,应在完全满足低级场景的所有基本要求之后,方可进阶至更高一级场景的判定。

相关名词解释

设备数字化率: 是指企业现有生产设备的数字化程度,即数字化生产设备占总生产设备数量的比例,其数值=数字化生产设备数量/总生产设备数量×100%。

设备联网率: 指联网设备占设备总数的比重, 其数值=实现 联网的生产设备数量/总生产设备数量×100%。

数字化人才:是指具备 ICT(信息通信技术)专业技能和补充技能的人才,他们在企业内部的各个岗位上发挥作用,包括传统信息技术部门的技术人员、业务部门中精通信息系统并熟练操作的专业人员,以及在数字化转型中新兴的横跨各种组织职能的角色。数字化人才通常划分三个层级:其一是数字化技术人才,掌握计算机、大数据、人工智能、通信等相关的数字化技术;其二是数字化管理人才,从战略上落地实施数字化战术,深谙商业价值、经营理念;其三是数字化应用人才,以企业核心资产的价值推动业务数字化应用能力增长,具有优化重构业务增长的分析能力。

综合能源消费量:指企业(单位)在报告期内工业生产实际消费的各种能源(扣除能源加工转换产出和能源回收利用等重复因素)的总和。计算方法参考国家统计局制定的《能源报表统计制度》中的《能源购进、消费与库存》(205-1表)和《能源加工转换与回收利用》(205-2表)。

(一)没有能源加工转换和回收利用活动的调查单位: 综合能源消费量=工业生产消费(205-1表第5列能源合计)

(二)有能源加工转换或回收利用活动的调查单位:

综合能源消费量=工业生产消费(205-1 表第 5 列能源合计)-能源加工转换产出(205-2 表第 11 列能源合计)-回收利用(205-2 表第 12 列能源合计)

注:《能源购进、消费与库存》(205-1 表)和《能源加工转换与回收利用》(205-2 表)填报目录包含各种能源(如原煤、焦炭、天然气等)、电力和热力、用于燃料的生活垃圾和生物质能等。计算综合能源消费量时,各类能源消费量需以标准煤为单位计量。下表为部分能源折标准煤系数示意,详见《能源统计报表制度》填报目录。

表 1 能源折标准煤系数表(部分)

能源名称	计量单位	参考折标准煤系数
原煤 (无烟煤)	吨	0.9428 吨标准煤/吨
原煤 (炼焦烟煤)	吨	0.9 吨标准煤/吨
原煤(一般烟煤)	吨	0.7143 吨标准煤/吨
原煤(褐煤)	吨	0.4286 吨标准煤/吨
洗精煤	吨	0.9 吨标准煤/吨
高炉煤气	万立方米	1.286 吨标准煤/万立方米
转炉煤气	万立方米	2.714 吨标准煤/万立方米
其他煤气	万立方米	1.786 吨标准煤/万立方米
热力	百万千焦	0.0341 吨标准煤/百万千焦
电力	万千瓦时	1.229 吨标准煤/万千瓦时
城市生活垃圾(用于燃料)	吨	0.2714 吨标准煤/吨

生物质能 (用于燃料)	吨标准煤	1
余热余压	百万千焦	0.0341 吨标准煤/百万千焦
工业废料(用于燃料)	吨	0.4285 吨标准煤/吨
其他燃料	吨标准煤	1

能源消费量(吨标准煤)=能源消费量(原单位)×折标准煤系数

示例:某企业本年度耗电 310 万千瓦时,消耗高炉煤气 1.5 万立方米。根据上述附表和计算公式,将电力折算以标准煤计量的消费量为 310×1.229=380.99(吨标准煤);将高炉煤气折算以标准煤计量的消费量为 1.5×1.286=1.929(吨标准煤)。该企业本年度能源消费总量为 380.99+1.929=382.919(吨标准煤)。

关键工序:指对成品的质量、性能、功能、寿命、可靠性及成本等有直接影响的工序;产品重要质量特性形成的工序;工艺复杂,质量容易波动,对工人技艺要求高或总是发生问题较多的工序。

业务环节:指产品设计、工艺设计、营销管理、售后服务、 计划排程、生产管控、质量管理、设备管理、安全生产、能耗管 理、采购管理、仓储物流、财务管理、人力资源等环节。

规范化管理: 企业对线下的流程化业务在线上实现清晰的标准化管理。

智能仓储: 指应用数字化技术,依据实际生产作业计划,实现物料自动入库、盘库或出库。

供应链可视化: 指搭建供应链管理系统(SCM),融合数字 化技术,实现供应链可视化监控。 **数据驱动平台:**指以数据为核心,通过数据采集、分析和应用,实现对企业运营、管理和决策的支持和优化的平台。

注:以上所给出的名词解释仅适用于《中小企业数字化水平评测指标(2024年版)》。